

- IIT JEE \& NEET Faculty (KOTA)
- Top Physics Faculty on Unacademy.
- 8+ years of teaching experience
- Research work with HC Verma sir at IIT Kanpur
- Produced ranks like AIR 6, AIR 10 etc.

PHYSICSLIVE

10.9 M mins

> Follow

Dr Amit Gupta
5.4M mins

Follow
6.4 M min

Ajay Mishra (AKM)
7M mins
Follow

Follow
11.8 M mins
33. Pranav Pundarik 7.8 M mins

Follow

Chandramauli maurya
4.4 M mins

Follow

Tamanna Chaudhary
4.2 M mins

Follow

Shailendra Tanwar
4.5

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS and learn from India's Top Faculties.

24 months
No cost EMI
₹50,400
₹25,200 $+10 \%$ OFF $\ddagger 4,667$

12 months
No cost EMI
₹ 34,650
+10\% OFF ₹3,208-
6 months
No cost EMI
,

NEET
 Physics DPP

DPP-8 Relative motion (River-Boat problems) By PRATEEK JAIN SIR
Q) A boat is moving with a velocity $3 \hat{\imath}+4 \hat{\jmath}$ with respect to ground. The water in the river is moving with a velocity $-3 \hat{\imath}-4 \hat{\jmath}$ with respect to ground. The relative velocity of the boat with respect to water is
(a) $8 \hat{\jmath}$
(b) $-6 \hat{\imath}-8 \hat{\jmath}$
(c) $6 \hat{\imath}+8 \hat{\jmath}$

Ans. c

$$
\begin{aligned}
\vec{V}_{B} & =3 \hat{\imath}+4 \hat{j} \\
\vec{V}_{R} & =-3 \hat{\imath}-4 \hat{j} \\
\vec{V}_{B / R} & =\vec{V}_{B}-\vec{V}_{R} \\
& =(3 \hat{i}+4 \hat{j})-(-3 \hat{i}-4 \hat{j}) \\
\vec{V}_{B / R} & =6 \hat{i}+8 \hat{j}
\end{aligned}
$$

Q) A boat is sent across a river with a velocity of $8 \mathrm{~km} / \mathrm{hr}$ (w.r.t. ground). If the resultant velocity of boat is $10 \mathrm{~km} / \mathrm{hr}$, then velocity of the river is:
(a) $10 \mathrm{~km} / \mathrm{h}$
(c) $6 \mathrm{~km} / \mathrm{h}$

Ans. c

$$
\begin{aligned}
& V=\sqrt{V_{R}^{2}+V_{B}^{2}} \\
& 10=\sqrt{V_{R}^{2}+8^{2}} \\
& 100=V_{R}^{2}+8^{2} \Rightarrow V_{R}^{2}=36 \\
& \quad V_{R}=6 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Q) A boat B is moving in upstream with velocity $3 \mathrm{~m} / \mathrm{s}$ with respect to ground. An observer standing on boat observes that a swimmer S is crossing the river perpendicular to the direction of motion of boat. If river flow velocity is $4 \mathrm{~m} / \mathrm{s}$ and swimmer crosses the river of width 100 m in 50 sec , then:
(a) Velocity of swimmer w. 1.0 ground is $\sqrt{15} \mathrm{~m} / \mathrm{s}$
(b) Drift of swimmer atong riverywill be zero
(c) Drift of swimmer along river will bey 50 m
(d) Velocity of swimmer .w.r.t groundis $2 \mathrm{~m} / \mathrm{s}$

Ans. c

$$
\begin{aligned}
& \mu^{V} / B_{3}=\stackrel{V R}{-} \xrightarrow{V} 4 \mathrm{~m} / \mathrm{s} \\
& \Psi V_{B}=3 \mathrm{~m} / \mathrm{s} \\
& \vec{V}_{R}=+\omega / s=\alpha i \mathrm{~m} / \mathrm{s} \\
& \vec{v}_{B S}=-3 \hat{\jmath} \mathrm{~m} / \mathrm{s} \\
& \vec{V}_{B / R}=-7 \mathrm{~m} / \mathrm{s} i \quad\left(V_{S / R}=7 \mathrm{~m} / \mathrm{s}\right) \\
& \vec{v}_{S A B}=\vec{v} \hat{j}=\vec{v}_{S}-\vec{v}_{B} \\
& \vec{v}=\vec{v}_{s}-(-3 \hat{i}) \\
& \Rightarrow \overrightarrow{\vec{v}_{s}}=-3 \hat{\imath}+v \hat{\jmath} \\
& \text { sweet }=\frac{\text { dist }}{\text { time }} \Rightarrow 50=\frac{100}{\text { speed }}=\frac{100}{V} \\
& v=2 \mathrm{~m} / \mathrm{s} \text { times } \\
& \vec{V}_{s}=-3 \hat{i}+2 \hat{j} \quad v_{s}=\sqrt{3^{2}+2^{2}} \\
& v_{s}=\sqrt{13} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

drift of swimmer $=v_{x} \cdot t=3 \times 50$

$$
\text { Drift }=150 \mathrm{~m} .
$$

Q) A river is flowing with velocity $2 \mathrm{~m} / \mathrm{s}$. A boat is moving downstream. Velocity of boat in still water is $3 \mathrm{~m} / \mathrm{s}$. A person standing on boat throws a ball vertically upwards w.r.t. himself with a velocity to $10 \mathrm{~m} / \mathrm{s}$. At the topmost point the velocity of ball w.r.t. man standing on boat, w.r.t. river and w.r.t. ground respectively are:
(a) $5,3,0 \mathrm{~m} / \mathrm{s}$
(b) $0,3,5 \mathrm{~m} / \mathrm{s}$
(c) $0,5,3 \mathrm{~m} / \mathrm{s}$
(d) None of these

Ans. b

$$
\begin{aligned}
& V_{B / R}=3 \mathrm{~m} / \mathrm{s}=\text { Velo. of Boat w.r.t. River } \\
& V_{R}=2 \mathrm{~m} / \mathrm{s}=\text { Vel. of River w. } \gamma \cdot t \cdot \text { ground } \\
& V_{B}-V_{R}=V_{B R ;}\left[V_{B / R}=V_{\text {VI }} \cdot\right. \text { of boat } \\
& \text { w.r.t. Riven }] \\
& V_{B}-2=3 \\
& V_{B}=5 \mathrm{mcs}
\end{aligned}
$$

\rightarrow velocity of boat w.r.t. ground
$V_{b}=$ vel. of ball w.r.t. ground,

$$
\begin{aligned}
& V_{b}=V_{B} \\
& \nmid 10 \mathrm{~m} / \mathrm{s} \\
& b \xrightarrow[b]{b} V_{b}
\end{aligned}
$$

at topmast point velocity in vertiche $\operatorname{dir}^{4}=0$

$$
\therefore \quad \stackrel{\rightharpoonup}{b} V_{b} \quad V_{b \phi}=V_{B}
$$

w.r.t. ground

$$
\begin{gathered}
V_{b}=V_{B}=5 \mathrm{~m} / \mathrm{s} \\
\omega \cdot r \cdot t \cdot \text { River }=V_{b} / R=V_{b}-V_{R}=S-\mathbb{R}=3 \mathrm{~m} / \mathrm{s} \\
\omega \cdot r \cdot t \cdot \text { Beat }=V_{b} / B=V_{b}-V_{B}=0 \mathrm{~m} / \mathrm{s} \\
\therefore \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Q) At a harbor, a boat is standing and wind is blowing at a speed of $\sqrt{2} \mathrm{~m} / \mathrm{s}$, due to which , the flag on the boat flutters along north-east. ow the boat enters in to river, which is flowing with a velocity of $2 \mathrm{~m} / \mathrm{s}$ due north. The boat starts with zero velocity relative to the river and its constant acceleration relative to the river is 0.2 $\mathrm{m} / \mathrm{s}^{2}$ due east. In which direction will the flag flutter at 10 seconds?
(a) South-east
(b) South-west
(c) 30^{0} south of west
(d) West

Ans. b

$$
\begin{aligned}
& \left.V_{\omega}=T-\mathrm{m} / \mathrm{s}(N) E\right) \\
& V_{R}=2 \mathrm{~m} / \mathrm{s}(N) \\
& u_{B / R}=0 \mathrm{~m} / \mathrm{s} \\
& u_{B}-V_{R}=v_{B R} \\
& u_{B}=V_{R}=2 \mathrm{~m} / \mathrm{s}(\mathrm{~N}) \\
& u_{B}=2 \mathrm{~m} / \mathrm{s}(\mathrm{~N})\left[\begin{array}{l}
\text { initial velocity of } \\
\text { boat witt. ground) }
\end{array}\right. \\
& a_{B / R}=0.2 \mathrm{~m} / \mathrm{s}^{2} \text { (E) }
\end{aligned}
$$

\rightarrow [acceleration of bout writ river]

velocity of boat in ' E ' at $t=10 \mathrm{se}$,

$$
v=u+a t=0+(0.2) 10
$$

$$
\left(V_{B}\right)_{\text {in }}=2 \mathrm{mcs}
$$

$$
V_{B}=2 \hat{\imath}+2 \hat{\jmath}
$$

Q) A man crosses a river in a boat. If he cross the river in minimum time he takes 10 min with a drift 120 m . If he crosses the river taking shortest path, he takes 12.5 min , find width of the river?
(a) 50 m
(b) 100 m
(c) 200 m
(d) 300 m

Ans. c
for min time.
$\operatorname{cose-1} \quad A \leftarrow \stackrel{V_{d}=120 \mathrm{~m} .}{\longleftrightarrow}$

for min shortost distorce.
case-2

from cose - 1:

$$
\begin{aligned}
& V_{R}=\frac{120}{10 \mathrm{~min}}=12 \mathrm{~m} / \mathrm{min} \\
& V_{R}=0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and. $\quad V_{m}=\frac{d}{t}=\frac{d}{10 \mathrm{~min}}=\frac{d}{6 \operatorname{cosec}}$-(1)
fron cose - 2
for shortest Path

$$
\begin{align*}
& V_{R}=V_{m} \cos \theta \text {-(2) } \tag{2}\\
& t=\frac{d}{V_{m} \sin \theta} \Rightarrow V_{m} \sin \theta=\frac{d}{12.5 \times 60} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\frac{(3)}{(1)} \Rightarrow \frac{v_{m} \sin \theta}{v_{m}} & =\frac{d / 12 \cdot i \times 80}{d / 10 \times 60} \\
\sin \theta & =\frac{10}{1(.)}=\frac{100}{125}=\frac{20}{25}=\frac{4}{5} \\
\sin \theta & =\frac{4}{5} \\
\therefore \cos \theta & =\frac{3}{5}
\end{aligned}
$$

Put $\cos \theta=3 / 8$ in eq (2)

$$
\begin{aligned}
& v_{R}=v_{m}\left(\frac{3}{5}\right) \\
& v_{m}=\frac{5}{3} v_{R}=\frac{5}{3} \times 0.2 \\
& v_{m}=\operatorname{0g} m \operatorname{ls} \\
& v_{m}=0.8
\end{aligned}
$$

$$
v_{m}=1 / 3 \text { or } 0.33 \mathrm{~m} / \mathrm{s}
$$

in e^{n} (20) $v_{m}=\frac{d}{600}$

$$
\begin{aligned}
& d=v_{m} \times 600 \\
& d=\frac{1}{3} \times 600
\end{aligned}
$$

$$
d=200 \mathrm{~m}
$$

Q) A boatman finds that he can save 6 s in crossing a river by the quickest path than by the shortest path. If the velocity of the boat and the river be, respectively, $17 \mathrm{~m} / \mathrm{s}$ and $8 \mathrm{~m} / \mathrm{s}$, find the river width:
(a) 765 m
(c) 556 m
(b) 1000 m
(d) 816 m

Ans. a

sor chartat path; $8=17 \cos \theta$

$$
\begin{aligned}
& \cos \theta=\frac{8}{17} \rightarrow \sin \theta=\frac{15}{17} \\
& r=17 \sin \theta=17 \times \frac{15}{17}=15 \mathrm{m4} \\
& r=15 \mathrm{~m} 1 \mathrm{~s} \\
& 1 t_{1}=\frac{d}{15} \sec \text { - (1) }
\end{aligned}
$$

For min. timey

$$
\begin{aligned}
& 12 \mathrm{~m} / \mathrm{a}=\sqrt{17^{2}+82}=18.8 \mathrm{~ms} \\
& t_{2}=\frac{d}{17} \mathrm{sec}-\text { (2) }
\end{aligned}
$$

$$
\begin{aligned}
t_{1}-t_{2}= & \frac{d}{15}-\frac{d}{17}=6 \text { se, } \\
& \frac{17 d-15 d}{15 \times 17}=
\end{aligned}
$$

$$
2 d=6 \times 15 \times 14
$$

$$
d=3 \times 15 \times 14
$$

$$
d=765 \mathrm{~m}
$$

```
-unacademy
```

Q) The width of river is 1 km . The velocity of boat is $5 \mathrm{~km} / \mathrm{hr}$. The boat covered the width of river with shortest will possible path in 15 min . Then the velocity of river stream is:
(a) $3 \mathrm{~km} / \mathrm{h}$
(c) $\sqrt{29} \mathrm{~km} / \mathrm{h}$
(b) $4 \mathrm{~km} / \mathrm{h}$
(d) $\sqrt{41} \mathrm{~km} / \mathrm{h}$

Ans. a

$$
t=\frac{d}{5 \sin \theta} \Rightarrow \frac{15}{60}+\frac{1 \mathrm{~km}}{5 \mathrm{~km} / \mathrm{h} \sin \theta}
$$

$$
\sin \theta=\frac{4}{5} \Rightarrow \cos \theta=\frac{3}{5}
$$

$$
\begin{aligned}
V_{R} & =5 \cos \theta \\
& =5 \times \frac{3}{5} \\
V_{R} & =3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Q) The speed of a swimmer in still water is $20 \mathrm{~m} / \mathrm{s}$. The speed of river water of is 10 m / s and due east. If he is standing on the south bank and wishes to cross the river along the shortest path the angle at which he should make his stroke w.r.t. north is given by :-
(a) 45^{0} west
(c) 0^{0}

Ans. b

$$
\begin{gathered}
2 \sin \theta=10 \\
\sin \theta=r_{2} \\
\theta=30^{\circ}
\end{gathered}
$$

Q) A man can swim in still water at $4 \mathrm{~m} / \mathrm{s}$. River is flowing at $2 \mathrm{~m} / \mathrm{s}$. The angle with downstream at which he should swim wo cross the river with minimum drift is:
(a) 120^{0}
(c) 30^{0}

> (b) 150° (d) 60°

Ans. a

$\min d r \cdot \delta t=2000$.
for zero drift.

$$
\begin{aligned}
& V_{b} \sin \theta=V_{R} \\
& 4 \sin \theta=2 \\
& \sin \theta=k_{c} \\
& \theta=30^{\circ}
\end{aligned}
$$

$$
\alpha=90+0
$$

$\alpha=120^{\circ}$ angle of v_{b} tran \& downstream.

Chalo Nikis

